
Process Membership in
Asynchronous Environments

Aleta M. Ricciardi* //V r_'/__,,_
Kenneth P. Birman*

TR 93- 1328

(replaces TR 91-1188)

February 1993 ?_ _/_..,

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*Authors supported by DARPA/NASA Ames grant NAG 2-593 and by grants from IBM
and Siemens Corporation.



_Lr



Process Membership in Asynchronous
Environments

Aleta M. Ricciardi,

Kenneth P. Birman*

Cornell University

Department of Computer Science

Ithaca, NY 13853-7501 USA

aleta@cs, cornell, edu, ken@cs, cornell, edu

FAX 607-255-4328

February 9, 1993

Abstract

The development of reliable distributed software is simplified by the ability to as-

sume a fail-stop failure model. We discuss the emulation of such a model in an asyn-
chronous distributed environment. The solution we propose, called Strong-GMP, can

be supported through a highly efficient protocol, and has been implemented as part

of a distributed systems software project at Cornell University. Here, we focus on the

precise definition of the problem, the protocol, correctness proofs, and an analysis of

costs.

Keywords Asynchronous computation; Fault detection; Process membership; Fault

tolerance; Process group.

*Authors supported by DARPA/NASA Ames Grant NAG 2-593, and by grants from IBM and Siemens

Corporation.



1 Introduction

The development of distributed software is greatly simplified in environments where process

and communication failures are benign. For this reason, it is common for distributed systems

to be developed under the assumption that the communication network does not partition

and that processes are fail-stop [19, 20] - that they fail only by halting, and that these

failures are detected accurately.

Unfortunately, real distributed environments are not entirely benign in these respects.

On the one hand, the assumption that programs fail by halting can be satisfied to a good

approximation by careful development methodology and testing. Similarly, most communi-

cation failures, such as message loss, corruption, out-of-order delivery, and replay, can be

detected and corrected at low cost, again with high probability. However, this is not the case

for failure detection and network partitions. Communication partitions are unavoidable in

networks, and when they occur, may mimic process failures.

It is well known that the consensus problem cannot be solved in asynchronous systems

subject to process failures [10], and this is often taken to mean that software for realistic

environments must live with some risk of inconsistent failure detection. A related result exists

for the database commit problem in the presense of partition failures [21]. A consequence is

that a great deal of the 'fault-tolerant' distributed software used in contemporary networks

is at risk of some form of inconsistent or incorrect behavior when an action is based on the

apparent detection of a process failure.

That such inconsistencies are not very noticeable testifies to the ingenuity of systems

developers in building systems for which inconsistency is not a fatal condition, but also

to the extremely limited use of genuinely distributed programs in modern networks. Most

distributed software is based on one-time interactions between a client program and a server;

it is very uncommon to see distributed systems in which any form of continually evolving

distributed state is shared among multiple processes. In client-server systems, it is uncommon

that the detailed behavior of different programs would be compared; hence, inconsistencies

in how programs report and react to failures might not affect the 'distributed' computation,

much less be noticed by a casual observer.

Unfortunately, the need to develop fault-tolerant distributed software with non-trivial

distributed state in modern computer networks is seen more and more often in modern

computer applications. One of us (Birman), through work with a distributed programming

environment called Isis [6, 5], has gained experience with a wide range of complex distributed

applications in settings such as telecommunications, factory automation, finance, scientific

computing and the military. In these domains one finds problems that are inherently dis-

2



tributed and require fanlt-tolerance, and also in which complex distributed state is needed

to operate the desiredsystem correctly. For example, a telecommunicationssystem must

react to failuresof switchingnodesin a consistentmanner;inability to do this cancausethe

systemto deny service. A brokeragesystemmay needto provide trading advice, basedon

changingmarket conditions, to multiple traders. If two analytic serversarestarted because

someparts of the systemincorrectly sensea primary serverashaving failed, different traders

may be given differing, inconsistentadvice. In settingssuchasthese, inconsistentbehavior

canhave significant implications and cannot be tolerated.

Similarly, modern distributed operating systemsexhibit features that require accurate

failure detection. For example, the Mach operating system [15] identifies communication

endpointsusinganabstractioncalledthe communication port. Each port has a single "receive

right", bound to one process. Rights to send data to a port can be passed among processes,

and are carefully tracked by Mach. Mach guarantees that communication to a port will be

reliable: if a successful outcome is reported to the sender, the message will not be lost unless

the destination fails, and a failure is reported only if the destination is faulty. Additionally,

Mach notifies the holder of a receive-right when all holders of send rights have deleted them

(or failed), and notifies the holder of a send right if the corresponding receiver fails.

Mach is widely cited for its simple and powerful communications model, and has emerged

as an industry standard. However, it is easy to see that this model cannot be implemented

in a way that is both safe and live: the only "safe" way to detect a failure is to wait for

the faulty process to restart, and this can introduce unbounded delays! At the time of this

writing, Mach waits for failed nodes to restart before reporting failures, hence even a single

failure could prevent the system from making progress.

Our work proposes an approach which, although subject to limitations stemming from

the impossibility results cited above, is nonetheless extremely powerful. The basic idea is

to substitute a logical notion of system membership for the physical notion of "operational"

or "failed". In our scheme, application programs define operational processes to be those

listed by the membership service and failed processes to be those not listed as members of the

system. To the extent that the membership service is able to report consistent information to

processes using it, those processes can then implement consistent, fault-tolerant distributed

algorithms.

Our membership service assumes a low-level mechanism that monitors the status of pro-

cesses. The membership service excludes any process from the system that this mechanism

suspects of having failed. If the removed process has not crashed (i.e. the suspicion was

incorrect or due to a transient condition that corrected itself), subsequent communication

from it to the remainder of the system is inhibited. In this way we prevent a "zombie" pro-



cessfrom contradicting the abstraction presentedto the remaining systemprocesses.Lastly,

a faulty processthat recoverswill be notified that it hasbeendropped from the system.

When physical partitions occur, our membershipserviceprevents the system from log-

ically partitioning. More precisely,our schemedistinguishes the majority partition from

minority partitions. By defining the state of the majority partition to be the true system

state and limiting the actions permitted in a minority partition, logically consistent behavior

can be guaranteed even when a partition occurs. During periods when a majority partition

cannot be constituted, our scheme might treat all partitions as minority ones, effectively

halting the system. The approach is thus one that provides rigorously consistent behavior

at all times, although it may not permit progress in infrequent situations caused by severe

network partitions. 1

As an example, our membership service could be used to overcome the failure detection

problems currently encountered in Mach. Mach could be made both safe and live if it were

modified to 1) report 'apparent' failures to our service (thereby making Mach one of our

suspector mechanisms), 2) treat machines and processes as faulty only when our service

reported them as such, and 3) restrict communication to members of the system (as defined

by our membership service). The Mach communication guarantees would then be satisfied

even in networks where transient disruptions would sometimes cause Mach to suspect failures

incorrectly. We believe that most application developers would prefer the environment our

service provides to one that could incur indefinite delays.

Agreement on the membership of a group of processes in a distributed system is a clas-

sic problem, and has been treated elsewhere. Relevant prior research includes solutions for

database contexts [4], real-time settings [8], and distributed control applications [12, 5]. Cris-

tian [9], specified and solved a problem similar to the one we consider here, but in contrast

to our work, he considered a synchronous setting. Our approach and solution focus on the

asynchronous case, but differ from previous work on group membership for asynchronous

systems. The membership semantics provided by Virtual Partitions [1] are weaker, allow-

ing multiple membership views to exists simultaneously, and requiring neither atomicity nor

uniformity in committing new views. These semantics however reflect a desire to maintain

replicated data availability; our goal is to provide a consistent, unique source of system-wide

membership information. In contrast to [13, 2], which also permit multiple membership

1Through experience with several hundred Isis applications, we have observed that the most common

partition case involves a single processor disconnected from its LAN. Network "bridge" failures are uncommon

in LAN settings, and it makes sense to treat WAN systems differently from LAN!s because a WAN has

different performance characteristics. Other systems have adopted different approaches to this issue, however,

such as in Dolev's Transis project [3].

4

J

J

J

J

J

f



views, we do not assume theexistence of an underlying fault-tolerant atomic, ordered mul-

ticast. The protocol of Mishra, et.al. [14] also relies on an ordered multicast. In these cases,

the potential membership must be a static set of processes so that the multicast ordering

properties can be maintained. This makes handling process recoveries more straightforward,

but still requires additional mechanism to join newly-created processes. We consider only

point-to-point communication and an arbitrary, unknown set of system processes. We han-

dle joins arising from both process recovery and process creation with the same mechanism.

The protocol in Birman and Joseph [5] blocks during periods when failures and recoveries

occur continuously. Our solution is fully 'online': we can process a constant flow of requests

to both remove and add processes, which is exactly what occurs in actual systems.

In Section 2 we describe our system model and the formal language we will use to specify

the Strong Group Membership Problem (Strong GMP). In Section 3 we specify Strong GMP,

and in Section 4 we present our solution, the S-GMP algorithm. Section 5 gives the main

part of the inductive correctness proof and discusses the protocol's message complexity and

minimality. We conclude by discussing the implications of our particular specification, and

directions for future work.

2 The System Model and Formal Logic

We consider only asynchronous distributed systems in which processes fail by crashing. Dis-

tributed means that the processors are physically separated and that processes executing

in the system communicate only by passing messages along a fixed set of channels. Asyn-

chronous means that the system has no global clock, and that there are no bounds on relative

local clock speeds, execution speeds, or message transmission delays. The asynchrony as-

sumption is realistic: system load, network traffic, and any other dynamic components of

the system that affect performance all conspire to violate synchronization assumptions.

Before defining the abstract computational model, we discuss the goals and effect of our

membership service for processes in asynchronous systems.

2.1 Membership Service Goals

This paper focuses on the events that occur at processes after the membership service is

already established (Section 4.2.4 discusses cold-starting the service). Our goal in building

this membership service is to provide processes in an asynchronous system subject to halting

failures, with an execution environment indistinguishable from a synchronous, halting-failure

system. Here, the term "indistinguishable" refers to the sequence of events observed by a

5



processwhile it is a member of the system. The situation for a process excluded from the

system is discussed below.

Our solution has the property that when a process, p, learns from the membership service

that another process, q, is no longer a member of the system, p can identify an event in its

execution after which it will never receive another message from q. For p, this is indistin-

guishable from q crashing and the membership service detecting it accurately. Moreover, our

solution constructs a consistent cut [7] along which every other functioning member of the

system will also learn that q is excluded. Consequently, p can take actions that depend both

on q having crashed and on all other processes learning this concurrently (just as it could

in a synchronous environment). In a normal asynchronous system, p would have neither

guarantee.

In our model, a new process, p, must join the system via the membership service before it

can interact with other processes. The service responds with the current system membership

list, and thereafter keeps p informed of each change to the list. For as long as p remains on

the list, it can send messages to all other listed processes, and communication appears to

be reliable and FIFO3 Finally, our work has the property that all members of the system

observe exactly the same sequence of membership changes (join and leave events), even when

members of the membership service itself fail or join. Elsewhere [18] we show how this strong,

same-sequence property both simplifies distributed algorithms that take actions based upon

membership changes, and, somewhat paradoxically, actually helps in reducing the cost of

the membership service protocol itself.

Processes that genuinely fail do so by halting. We require that such a process is eventually

suspected of having failed, and then removed from the system list. 3 Of course, no live failure

detection protocol for asynchronous systems can avoid mistakenly suspecting an operational

process and then removing it from the membership list [10]. Because exclusion from the

membership list will be equated with failure, such exclusions must result in executions that

are consistent with those in which the excluded process had, in fact, failed. Specifically, we

must suppress communication from a process that has been erroneously excluded. To this

end, in addition to FIFO and channel reliability assumptions, we assume processes sever

2It is well know that an underlying message transport system that uses sequence numbers, acknowledge-

ments, and retransmission can overcome message loss, duplication, and out-of-order arrival.
3While we are not concerned with the implementation of the failure suspicion module, this can be quite

inexpensive. In particuiar_ because our membership service places a uniformly observed ranking on system

members it is not necessary that every process monitor every other process. For example, the scheme used in

the Isis system requires each process to monitor only the next-highest ranked process. This seems to imply

a linear cost, but because network speeds are very high the dominant cost turns out to be the overhead

imposed on processes, which is constant and unrelated to system size in this case.

6



communicationpaths with all others they believefaulty.4

From the excluded process's, say q's, point of view, it can no longer communicate with

other processes, but it can continue local computations. To illustrate the issues suppose q had

been the token-holder in a protocol that orders multicasts among a subset, 5, of processes.

Upon learning of q's failure, the remaining processes in 5 determine a new token holder, say

q', although q will continue believing it is the token holder. Since q can no longer make

its message ordering known to 5 , the fact that q's and q"s orderings may differ does not

violate the (observable) correctness of the message-ordering protocol. That q will 'observe'

a different ordering than the rest of 5 is irrelevant.

2.2 System Requirements and Model Assumptions

To implement the FIFO and channel reliability properties we require two things of the

physical system. First, each message sent along a channel must have a non-zero probability

of reaching its destination intact, and second, each process must have a local, monotonically

increasing clock (i.e. counter). These two requirements suffice to implement live failure

suspectors, and a completely-connected network of reliable, FIFO channels. Our protocols

will assume this complete package of communication guarantees, but we are not concerned

with how they are implemented.

As soon as one processes, p, suspects another of having failed, it Disconnects all its com-

munication channels with the suspected process. Moreover, to hide as quickly as possible

an erroneous suspicion, p Gossips (for example, with piggy-backs) its suspicion to all other

processes in further communication, whereupon recipients adopt p's belief and also discon-

nect themselves from the suspected process. The Gossip and Disconnect actions combine to

isolate suspected-faulty processes among processes not believing each other faulty.

The [10] impossibility result can be interpreted as forcing applications in asynchronous

systems to either make accurate failure detections or be live. By choosing liveness, we

admit the possibility of erroneous failure detections, but by isolating mistakenly suspected

processes, we prevent them from further affecting the global system. As a result, q halting

and q mistakenly suspected to have halted are indistinguishable.

4Because the communication layer is asynchronous, messages from an excluded process may continue to

arrive, and be rejected, for an unbounded period of time. The communication layer would also inform an

excluded process that it has been excluded, causing it to rejoin the system under a new process identifier.

The protocols needed to implement such a transport layer are evident and will not be presented here.



2.3 The System Model

Denote by Proc a countable set of process identifiers, {pl,p2,...}. The process name space

is infinite so that we can model infinite executions in which new processes continually arise.

However because there can be only finitely-many processors, and because process births

require non-zero time, the number of processes extant at any real time in an execution will

always be finite.

Processes may send and receive messages, and do internal computation. The event

send_(q,m) denotes p sending message m to q, and recvq(p,m) denotes q's receipt of m

from p. The distinct internal event crash v models the crash failure of process p, after which

only other crashp events are permitted. A history for process p, denoted hp, is a sequence of

events executed by p, and must begin with the distinct, internal event starry:

hp = 1. 2 ..e k>0.

We write e E hp when e is an event of hp. A cut is an n-tuple of process histories c =

(hpl,h_,... , hp,), where pi E Proc. We restrict our attention to cuts determined by finite

subsets of Proc since these represent the system's global system state at some real time in its

execution. Each execution begins with the distinct cut, Co = < startvl, starts,..., startp, >.

We also write e E c to abbreviate "e E hp for some p mentioned in c", and elaborate when

the context does not clearly distinguish the intention.

We assume familiarity with the happens before relation [11] between events (written

e _ e'), and also with consistent cuts [7]. Henceforth we restrict the discussion to consistent

cuts, as they are the ones that are physically realizable. Consistent cuts are the possible

global states of an execution; while a given consistent cut may never have existed at any

point in real time, it is impossible for a cut that is not causally consistent to ever exist at

any point.

A characterization of global causality should incorporate the notion of progress between

global states. Specifically, we desire that every process either makes local progress or remains

stationary, none should regress. A process makes local progress between the cumulative states

represented by hp and h i exactly when hp is a prefix of h i.

Definition Given c = (hl,...,hp,...,hn) and c'= (h_,...,h'p,...,h_), c causally precedes

d (written c < d) if and only if for each process, p either 1) hp = hl; or 2) hp is a strict

prefix of h i.

Observe that there are (infinitely) many completions for any given cut. In this sense, the

future of any cut is uncertain; it may branch out in many directions. On the other hand,

c _< c' implies that any execution in which c' is a prefix must also contain c as a prefix.

8



Pl

P2

P3

P4 -< /
c d

!
Figure 1: hp, is a strict prefix of hp_ for each pi so c << c'.

Definition Let c = (hl,...,hp,...,h,,) and c' = (h'_,...,h'p,...,h') be consistent cuts.

Then c strictly precedes c' (written c < c') if and if c < c' and c _ c'; the cut c very strictly

precedes d (written c << d) if and only if hp is a strict prefix of h_ for each p mentioned

(Figure 2.3). II

2.4 The Modal Logic

So far, our description of Strong GMP refers to when core members agree on the group view,

as well as the degree of simultaneity with which they do so. A temporal modal logic allows

us to express these notions. Unique to our logic is its attention to asynchrony - the basic

semantic entities of the logic are consistent cuts. We briefly describe the temporal modalities

we use to specify Strong GMP.

Given a propositional formula, ¢, and the < relation between cuts, the formula [3¢ holds

along cut c precisely when ¢ holds along all future cuts in all runs containing c (i.e. every

c' such that c < c'). _¢ holds along c when ¢ will hold along some future cut in every run

containing c. We interpret _ as "inevitability". _¢ holds along c if ¢ held at some c' < c,

and Be if ¢ held along all c' < c.

3 Strong Group Membership

We now formally define the Strong Group Membership Problem for asynchronous systems.

Our definition specifies how to coordinate local events among a group of processes so that the

group's externally observed behavior is indistinguishable from that of a single, fault-tolerant

process. Thus, any solution to Strong GMP can be used to build a system membership

9



service (which we call a Membership Resource Manager, or MRM). In this section, and in

the rest of the paper, we restrict our focus to the core processes implementing the MRM -

the formal problem describing their actions, and the algorithm solving this problem. Thus,

we describe a hierarchical approach to building a Strong GMP membership service, in that

our protocol is run by a small core set of processes, which use a cheap replication scheme (e.g.

the Isis replication tools) to maintain a fault-tolerant member list for the overall system.

Creating the illusion of a single fault-tolerant process means that core members must

agree, not only on the entire system membership, but also on the composition of the MRM

core. A core member that fails or is otherwise removed must be consistent with the rest of

the core while it is a member. More important, a core member that is removed from the

core but has not halted must not be able to misrepresent the system state; our specification

must preclude such a process from changing its local view of the system's membership or

the core's membership independently.

3.1 Formal Specification

The formula uP v holds along a cut if and only if p has not executed crasb_ in its local history

component of that cut. Conversely, DOWNp holds along c exactly when p has crashed in c.

The indexical set Up(c) in an asynchronous run A is the set of all processes that have not

crashed along c : Up(c) = {p [ TJPp holds along c}.

Process p executes the event faultyp(q) as soon as it suspects q faulty; whether p comes

to suspect q through some local observation or through our Gossip assumption (Section 2.2)

is immaterial. Some time after recording fauItyp(q), p will execute the event remover(q).

The distinction between these events is significant: faultyp(q) represents p's belief in q's

faultiness, which may be incorrect, while remove(q) is actual removal of q from the set of core

members p believes operational. The formula FAULTYp(q) holds along all cuts that include

faultyv(q) , and REMOVEp(q) along all cuts that include removev(q ). Analogous statements

hold for events operatingp(q) (p believes q is functional) and add_(q) (p adds q to the set

of core members), and formulas OPERATINGp(q) and ADDp(q). In contrast to FAULTYp(q),

OPERATINGp(q) is not stable.

The local membership view for process p along cut c =(hl,...,hp,...,h_), (denoted

I.ocalViewp(c)), is the set of processes p obtains by sequentially modifying its initial mem-

bership list according to the removevO and addvO events in hp. We use l.ocalViewp when the

cut is clear from context. Trivially, we require p E [ocalViewp(c). The formula IN-LOCALp(q)

holds along all cuts, c, such that q E i_ocalViewp (c). Because hv is linear, it makes sense to talk

about the x th version of p's local view, which we denote I_ocalView_v. Finally IN-LOCAL_(q)

holds when q E I_ocalYiew_. The formula NoWDEF'D(kocalViewg) holds along c if p has not

10



(yet) defined it's z *n local view.

We extend local views to group views as follows. Given S C_ Proc, and a consistent cut

c, if the local views of all the functional processes in S are identical, the group view is the

agreed-upon local view; if S has no functioning members or if the functioning members of

S have different local views, the group view is undefined. We say that S determines a group

view. Formally :

Definition Given a consistent cut c and a set of processes, S C_ Proc, the group view

determined by S along c is :

GpViews(c ) = {

|

LocalViewp (c)

undefined

A(p, qE(SNUp(c))#O):

(LocalViewv(c) = LocalViewq(C))

otherwise.

The formula UNDEF'D(GpViews(c)) holds along c if the local views of any functional

members of S disagree or if S rl Up(c) = 0.

Constraining Membership in GpViews(c )

The definition of GpViews(c ) is crucial to the class of Group Membership Problems so it

is worthwhile discussing how the sets S and GpViews(c ) relate. Recall that GpViews(c ) is

the abstraction we are using to define the single, fault-tolerant process illusion that will be

used to build an MRM. 5 In this light, MRM core members are precisely the members of

GpViews (c).

If q E (GpViews(c) f3 _) then q is a core MRM member whose local view is not used in

determining either the MRM composition or the total system membership. Specifically, q's

local view is not constrained by the definition of GpViews(c), so LocalViewq(c) need not be

identical to GpViews(c ). Because q replies to MRM client requests based on its local view,

its replies will contradict other core members' replies when LocalViewq(c) _ GpViews(c); the

single-process illusion falls apart. Consequently, unless every core member's local view is

used to determine the MRM group view, the MRM cannot guarantee global consistency.

To avoid this, our specification forces q to be in S whenever it is in GpViews(c ) :

(GpViews(c) N Up(c)) C- (S N Up(c)).

5In practice, the group view, and therefore each core member's local view, includes the entire system

membership in addition to the MRM composition; here we are only concerned with the MRM composition.

11



The reverseinclusion follows trivially sincep _5 LocalViewp(c). Consequently, our specifica-

tion requires S = GpViews(c ).

To finish the single-process illusion, the MRM must be unique. We will therefore also

require that there be at most one set satisfying this equality along any consistent cut. Since

there can only be one MRM, some form of quorum consensus is needed to change the global

system membership. If a quorum cannot be attained (for example during certain partitions),

no solution to Strong GMP can make progress.

Finally, GpViews(c ) is defined if and only if the local views of all its functioning members

agree. Processes that are eventually removed from the core are not excused from having

consistent views while they are members. Moreover, a core member that is removed but

has not crashed cannot be allowed to change its local view. Our specification captures

these safety issues in two clauses: GMP-2 formalizes the Uniqueness requirement for group

views, and GMP-3, by requiring every local view to exist as a group view, prevents excluded

processes from taking actions unilaterally.

3.2 Strong GMP Specification

We now have the language necessary to formalize Strong GMP. Since formulas are evaluated

along cuts we drop references to cuts in indexical sets.

GMP-0 (Base Case) An initial group view eventually exists:

0 V (S0 = GpViews0())"
S0c_Proc

GMP-1 (Validity) Processes do not make changes to their local views capriciously. For

example, if q were once, but is not currently, in LocalYiewp, then p should believe q

faulty.

a. (<>IN-LOCAL,(q)A--,IN-LOCAL,(q)) => FAULTY,(q)

b. (_>-_IN-LOCALp(q) A IN-LOCALp(q)) => _> OPERATINGp(q).

In contrast to FAULTYp(q), OPERATINGp(q) is not stable.

GMP-2 (Uniqueness) Non-null group views are unique along all consistent cuts.

V (GpViews()=S)=¢" A UNDEF'D(GpViews'())
ScProc _¢S #S

12



The formula IN-GPv holds along all cuts, c, such that p E GpViews(c) (when it is

defined); OUT-GPp holds when p _ GpViews(c ) (also provided GpViews(c ) is defined).

GMP-3 (Sequence) All processes exhibit the same sequence of local views, provided the

views are defined. Moreover, there is a sequence of cuts along which each local view is

a system view:

AAoA
O<x P q

GMP-4 (Liveness) For each event faultyp(q) (respective, operatingp(q)) and each process

p E GpView _, eventually either p is removed from the group view, or q is removed from

it (respective, added to it):

a. FAULTYp(q)A IN-GPp =_ (OOUT-GPq V _OUT-GPp)

b. OPERATING,(q) A IN-GP, =*" (<_IN-GPq V (>OUT-GP,).

GMP-3 is equivalent to requiring that each local view eventually becomes a group view.

The presence and placement of the O modality forces a group view to exist along some

consistent cut in an execution. This too, is why we cannot bind LocalViewq to a version

number. Local views indexed by version numbers are static - the composition of a process's

x th local view will never change. If c is the witness cut for _, then omitting the version

superscript forces LocalViewq(c) (for every q E LocalView_p) to be identical to LocalView_ at

least along c. Had we included the version number in the equality clause, we would not have

been able to conclude that group views necessarily exist, since the local views need not have

been identical simultaneously.

Finally since each process executes at least one event between local views x and x + 1,

the corresponding group views will exist along cuts that are related by <<, so it makes sense

to talk about the x th group view, which we denote GpView _.

4 A Protocol Solving Strong GMP

Our solution to Strong GMP, the Strong Group Membership Protocol (hereafter S-GMP),

is asymmetric and centralized: a distinguished core member, denoted mgr, coordinates

13



mgr

P

qf

Phase I Phase II

Figure 2: Two-Phase Communication Structure of Simple S-GMP.

updates among all core members' local views. In a symmetric, distributed solution [14, 3]

all core members would behave identically and make updates independently. We chose the

centralized approach for two reasons: it requires only O(n) point-to-point messages, instead

of O(n2), and it is a simpler paradigm within which to reason. While mgr's failure is more

troublesome to handle than an outer (non-mgr) member's, the benefits of the centralized

approach, coupled with the low probability of the mgr falling outweigh these concerns.

An important aspect of S-GMP is the lack of restrictions on changes to a group view.

Specifically, there is no upper limit on the number of processes one can add to GpView _ to

form GpViewx+l; if removing processes from GpView _, the upper limit is the size of the

largest minority subset of GpView _. This flexibility broadens fault-tolerance, and enables a

membership service defined by Strong GMP to adapt quickly to changes in system load. The

Appendix contains the complete protocol.

4.1 Simple S-aMP

While we assume in this section that mgr does not fail, the protocol we present has a

more complicated communication structure and degree of coordination than this assumption

warrants. Indeed, if we knew mgr could not fail we would already have a single, fault-tolerant

process. Anticipating mgr's failure simplifies describing reconfiguration in Section 4.2.

When mgr suspects an outer member's (or some subset of outer members'), say r's,

failure, it initiates a two-phase update algorithm. In Phase I (Figure 2) mgr proposes q's

removal by multicasting a submit message, M-sub(--q), to the members of its local view

(multicasts are not failure-atomic), mgr then waits for each member to respond, or to start

14



believingamemberfaulty. In this way,at the endof PhaseI, all coremembersthat mgr does

not believe faulty, believe q faulty. If mgr receives responses from a majority subset of its

current local view, it multicasts a commit message, M-com(-q), in Phase II; 6 mgr must block

if it does not receive a majority response. If local views are identical at the beginning of this

protocol, because mgr is a single process, local views are identical at the end of it.

The submit message coordinates belief among the core in q's faultiness; the commit

message tells outer members that the group has reached agreement on q's failure and that

they should now remove q from their own local views. However, because mgr does not receive

responses from outer members it believes faulty, it cannot know whether these members

received its submit message. From mgr's perspective, these members may not be aware

of the current update to the group view, rendering core-wide agreement on the new view

contingent upon the subsequent removal of these 'faulty' members. The Gossip assumption

ensures that operational outer processes become aware of such contingencies.

When adding to the group view, mgr sends the new process(es) p a State-Xfer message

giving p permission to join and informing p of all relevant system state, mgr awaits a reply

(or suspicion of p's faultiness) and then multicasts the commit message to the entire new

group. To simplify bookkeeping, new members begin with local version equal to the group

version in which their addition resulted.

4.2 Full S-GMP

When mgr is believed to have failed the outer members execute a reconfiguration algorithm to

select a new coordinator and, if necessary, reestablish the group view. Local view agreement

may be lost, for example, when mgr fails in the middle of a M-com 0 multicast. In Figure 3

local views differ along the second cut so the group view is undefined.

Reconfiguring successfully involves solving two problems: succession - which process(es)

should initiate reconfiguration and which should assume the mgr role at the end; and pro-

gression - which update should a reconfiguration initiator propose to resolve core members'

inconsistencies?

A reconfigurer must be able to determine the last defined group view and propagate the

correct proposal for the succeeding group view. Extrapolating from Figure 3, we see that

proposals may also be partially known among the current group view.

The most difficult aspect of reconfiguring involves invisible commits. An invisible commit

occurs when the only processes receiving a commit message fail, or are believed faulty by the

6Typically, a phase of communication consists of a multicast from a single process to a group of processes

and their responses back to the initiator. In fact, Simple S-GMP is one-and-one-half phases, but this is

awkward.

15



mgr

P

M-=om(--q)

LocalView_.

/ /
GpView _

Figure 3: mgr's Failure Results in Undefined Group View.

rest of the group. This is significant for reconfiguration: while no subsequent reconfigurer

will ever know whether these processes committed the change to their local views, GMP-3

requires that if an invisible commit did occur, the remaining core members must behave

consistently. It is imperative, then, that every invisibly committed update be detectable by

every reconfigurer. We can ensure this only if all initiators (whether mgr or a reconfigurer)

attempting to install the x th group view vie for the requisite majority responses from among

the same set of processes.

4.2.1 The Reconfiguration Algorithm

Unlike the mgr-initiated algorithm, reconfiguration requires three phases in the worst case.

This is an outgrowth of the Sequence requirement (GMP-3) and the possibility of invisible

commits; we discuss this below in more detail. For simplicity, we present the algorithm here

as always using three phases ([17] discusses the cases when two suffice).

For p with ver(p) = x - 1, let NextUpdat% be the tuple [< v, z >, rank(/)]p, where v is the

value p is waiting to commit to form LocalView_p, and rank(i) is the rank (in LocalView_ -_)

of the initiator that submitted < v,x >. LastComrnitp is the value p committed to form

LocalView_ -1. state(p) is p's local state information: vet(p), NextUpdat%, and LastComrnitp.

In the first phase, the initiator r, multicasts a reconfiguration interrogate message,

R-jar(state(r)), to its local view. The reconfigurer then awaits responses from the outer

processes, or its own belief in their faultiness. Upon receiving l_-int(state(r)) a core mem-

ber that is lagging behind r adopts r's local state as its own (committing the appropriate

value, and so forth). Every core member, whether it just updated its local state or not,

responds to the reconfigurer with its current local state, state().

If a majority respond, then r uses the information it received to determine an update

16



value, say v, and version number, say x, whose execution would result in a new group

view. The initiator multicasts this event as the Phase II reconfiguration submit message,

R-sub(< v, x >). After obtaining a second majority response acknowledging R-sub(< v, x >),

r multicasts the Phase III reconfiguration commit message, R-corn(< v, x >). Again, major-

ity response to R-int(state(r)) and R-sub(< v, x >) are essential in maintaining GMP-2 and

GMP-3; without either, r must block. If the committed operation is the addition of a set

of processes, say Q, then q E Q must respond with any pending NextUpdateq value it may

have (Figure 4). This is necessary to maintain GMP-2 and GMP-3 in cases where Q had

already joined at the behest of a previous intiator, for example mgr. If mgr had been able

to propose and additional update to Q, say M-sub(< +R, x + 2 >), it may also have been

able to commit < +R, x + 2 > invisibly to r and Q.

Definition An update initiator (either mgr or a reconfigurer) is successful for a submission

(M-sub(< v, x >) or R-sub(< v, x >)) if a majority subset of the initiator's local view respond

to the submission. In this case, we say the submitted value is stable. II

A successful initiator is able, if it does not fail, to commit the value it submitted. In this

light, GMP-3 means that all successful version x initiators must make identical proposals.

The local state information collected during reconfiguration Phase I must allow a reconfigurer

to determine the correct update proposal unambiguously.

In S-GMP all successful reconfigurers attempting to install (or complete the installation

of) the x th group view propagate mgr's proposal if they become aware of it; they propose

mgr's removal if they do not. Unfortunately, as Figure 5 makes clear, asynchrony and

inopportune failures can result in there being two different proposals for the same instance

of the group view. There, reconfigurer rl does not learn of mgr's proposal, < v, x >, and so

proposes mgr's removal for version x (as dictated by Procedure DetermineProposal in the

Appendix). The subsequent reconfigurer r2 learns of both proposals and must then decide

which to propagate. Correctness requires that only one of the two proposals become stable,

and that any non-blocking reconfigurer be able to determine which one it is by the end of

Phase I (we discuss how a reconfigurer determines this in Section 4.2.3). By propagating the

stable submission, a reconfigurer forces the entire group to act consistently with any invisible

commits.

4.2.2 Rules of Succession

We solve the succession problem by imposing a deterministic, linear ranking on core members

based on seniority in the group view - 'older' core members are ranked higher. This is sensible

only if group views are unique and agreed-upon. Let rank(p) denote p's rank. Whenever a

17



Q

mgr

I M-corn(<+Q,_+ I>) I

IM-sub(< +R,x + 2 >)

State-Xfer I

NextU pdateQ
[+R,x + 2,_nk(mgr )1

r determines R-sub(< +Q, x + 1 >)

but may next M-sub(< -mgr, x + 2 >)

R-corn(< +Q, x + 1 >) then

M-sub(< +R, x + 2 >)

Figure 4: A Situation Requiring New Core Members to Report NextUpdate to Initiator

(mgr's commit message cannot reach any processes except Q).

18



rl

R

r2

T

mgr

R-int(...)

_R-s:.b(<-m,r. x >) .

1 i....
_ °o°.-° mgr said,'M-sub(< v, x >)'."

_@_ub(< v, x >)

Figure 5: Reconfigurer r2 Learns of Conflicting Proposals for GpView *.

process is removed from the group view, the ranks of all higher-ranked processes are decreased

by one.

A process initiates reconfiguration when it believes all others ranked higher than itself

are faulty. That is, given cut c and LocalViewp(c),

_eLocalViewp(c)

While initiating reconfiguration on INITIATE(p) can lead to multiple reconfigurations, it

guarantees at least one process will undertake reconfiguring. Consider Figure 6 in which

rank(mgr ) = p, rank(p) = p - 1, and rank(q) = p - 2, and both p and q believe mgr faulty.

In the second scenario q expects p, which has crashed, to initiate a reconfiguration; any

solution must ensure that q eventually comes to suspect p faulty. In S-GMP, q times-out

waiting for p's R-int() message, surmises FAULTYq(p), and then initiates reconfiguration.

In the third scenario both p and q initiate reconfigurations. S-GMP must also ensure view

uniqueness in the face of multiple, concurrent reconfiguration attempts.

19



Scenario uPp
1st True False

2nd False False

3rd True True
4th False True

FAULTYq(p) INITIATE(q) INITIATE(p)

False

Eventually

True

True

True

False

True

FMse

Figure 6: Initiating Reconfiguration: FAULTYp(mgr ) A FAULTYq(mgr ).rank(mgr ) =

rank(p) + 1 = rank(q) + 2.

faultyQ(r)

q _int(state(q)) _ .

R

>

>

Figure 7: Majority of Responses Needed

4.2.3 Rules of Progression

To understand the difficulties in reconfiguring we examine GMP-2 and GMP-3 more closely.

Uniqueness requires that at most one group view exists along any consistent cut. In the

situation depicted in Figure 7, Q and R are subsets of GpView =, and q and r are both

initiating reconfiguration. If all members of Q believe r faulty, the Disconnect assumption

means they will receive none of r's messages. Analogous statements hold for the members of

R regarding q. If r's proposal differs from q's then the members of R will commit a different

value than the members of Q. If R U {r} eventually remove all of Q t_J {q}, and Q t_J {q}

eventually remove all of R U {r}, two distinct group views will exist.

Naively, it would appear that the majority requirement suffices to ensure Uniqueness.

However, as Figure 3 makes clear, initiators that may end up installing (submitting and

2O



M-sub(< v,x >) M-corn(< v,x >)

P

55,,"
R-int(state(r))

Figure 8: Value < v, x > Committed Invisibly to p, q, and r

committing) the same group version need not begin reconfiguration with identical local

views and so may be seeking majority approval from different sets of processes.

Reconfiguration Phase I Responses

Outer processes' responses to R-int(state(r)) must allow r to determine the nature and

composition of all local view inconsistencies, including inconsistencies involving core members

that did not respond to r. Local view information alone is insufficient to satisfy GMP-3

(Sequence) as invisible commits are not detectable.

In Figure 8, < v, z > is committed invisibly to p, q, and r. Since all three have identical

local views, r will not detect the actual discrepancy. However, p is aware of mgr's intention

to commit < v, z >, and p can envision a situation in which mgv succeeded in doing so

and then failed (in this case, the situation that actually occurred). If p were to forward

mgr's intention to commit < v, z >, v would then envision the same situation and propagate

< v, z > as its Phase II submission. Thus, in addition to its local view, an outer member

must also report how it expects to change its local view next.

We have described how a reconfigurer may discover two different values were proposed

for the same group version. In S-GMP the reconfigurer propagates the value proposed by the

process of least rank among those making proposals (Procedure GetStableProposal in the

Appendix). Proposition 5.7 proves this choices ensures GMP-2 and GMP-3.

21



4.2.4 Membership Service Startup

Our approach depends on the initial group view being unique, and this is difficult to guar-

antee in asynchronous systems. We use a heuristic borrowed from previous versions of the

Isis system. Briefly, "cold-start" of the MRM is limited to a small, known set of sites. To

cold-start, a process first queries these locations to determine whether any others have begun

the cold-start procedure. It continues the cold-start procedure only if it determines no oth-

ers have begun, or if it "outranks" all processes that have concurrently begun cold-starting.

Because we iterate this procedure the probability that two cold-starting processes remain

unaware of each other diminishes with each round. After a suitable number of successful

rounds a process determines it should start the MRM. Although probabilistic, we find this

scheme highly successful in practice. 7

5 Correctness

The proof that S-GMP correctly solves Strong GMP is inductive. In this section we present the

more interesting theorems of the inductive step. We show that if GpView _-1 is uniquely de-

fined, S-GMP results in exactly one value being committed among the members of GpView _-1 to

obtain GpView _. That S-GMP satisfies GMP-2 and GMP-3 follows from there.

The major steps in the proof are, first, showing that all initiators attempting to instal/

GpView _ do so starting from LocalView_v-1. As a result, all such initiators compete for

majority approval from the same set of processes. We use this result when we show that a

reconfigurer knows which of the two proposals it may learn of could not have been stable.

While the other proposal may not, in actuality, be stable, by choosing to propagate it, the

reconfigurer cannot possibly act inconsistently with the subset of the core that is 'invisible'

to it. Stated another way, we show that all successful initiators propose the same value for

GpVie_, and that this value is the only one that can possibly be committed.

For brevity, we do not prove all propositions; the full proof of correctness is in [17].

5.1 The Inductive Step

As in Section 4.2.1, NextOpdat% is the tuple [< v, ver(p) + 1 >, rank(i)] r For each p, Gossip,

Disconnect and INITIATE() mean that NextUpdat% is always the proposal of the lowest-ranked

initiator from which p received proposals for version ver(p) + 1.

7In several years of wide use no problems have ever been traced to the restart scheme. Note also that

limiting cold-start to a single, known, site suffices to guarantee uniqueness of the initial view but unfortu-

nately this scheme is now vulnerable to a liveness problem: we may be unable to restart the system after a

crash.

22



For processr multicasting messagem, Acks(r, m) is the set of processes from which r

receives a message acknowledging, or in response to m. Let

Ahead, de_=f {PIP E Acks(r,R-int(state(r))) A (ver(p) > ver(r))}

Proposition 5.1 If r is a reconfiguration initiator with ver(r) = x - 1, then for every p

responding to R-int(x- 1), x- 1 _< ver(p) < x. II

(

For process p, let Faulty v = _q [ IN-LOCALp(q) A FAULTYp(q)_. s We say GpView _-' is p-

defined along cut c if p knows at c that every process in I_ocalViewp(c) - Faultyp has defined
%

its (x - 1) 8t local view. Of course GpView x-1 may not be defined globally, but from p's point

of view, GpView x-1 is (or has been) defined. For a reconfigurer r, GpView _-1 is r-defined

at the end of Reconfiguration Phase I if every process in Acks(r,R-int(x-1)) - Faulty,

reported a local version at least as large as x - 1.

Proposition 5.2 Let r be a reconfiguration initiator. Then r proposes version x if and only

if GpView z-1 is the most recent (i.e. highest-numbered) r-defined system view at the end of

Reconfiguration Phase I.

II

Proof Follows from analyzing procedure DetermineProposal in Section 7.

From Proposition 5.2 we infer that an initiator attempting to install version x has local

version either x - 1 or x. We now show it can only have local version x - 1.

Proposition 5.3 For any initiator, r, if r proposes < v, x >, then ver(r) = x - 1.

Proof The proof is trivial when r = mgr, so suppose r is a reconfiguration initiator, with

ver(r) > x. When r multicasts R-int(state(r)), any process p lagging behind r adopts r's

local state as its own. 9 Thus, when it responds to r's interrogate message, state(p) = state(r)

making ver(r) the most recent r-defined version. From Proposition 5.2 r would then propose

some value for version vet(r) + 1, and not version x. On the other hand, ver(r) < x - 1 is

impossible if GpView _-1 is the most recent r-defined view.

|

Hereafter, we use sub() and corn 0 to denote generic submit and commit messages irre-

spective of the initiator's role (mgr or reconfigurer).

SFaultyp is implicitly indexical.

9It turns out that any process r does not believe faulty at the end of Phase I will have local version at

least ver(r) - 1 when it receives R-int(state(r)).

23



Vz+l

P

Ahead,.

/ com(+v_+2)

/oo,_+_.+,_/\ I1

sub(+v:+2) Acks(r,R- int (x))

j\\, ;J __
R-int(x)

[

r is waiting to commit < v,+l, z + 1 >[

l

Figure 9: Possible divergence: r is a potentially successful reconfigurer, and p is an initiator

that could commit < v_+3, x + 3 > without r learning the value vx+3.

24



To illustrate the difficulty in proving Sequence (GMP-3) consider the following situation,

depicted in Figure 9. Let r be a reconfigurer with ver(r) = x, and let Acks(r,R-int(z)) (we

use R-int(ver(r)) rather than R-int(state(r)) to get explicit reference to r's local version) be

a majority subset of kocalView_. Proposition 5.1 means the largest version number observed

among r's respondents is x + 1, so suppose Aheadr is non-null and let p be a process from

which some member of Aheadr received corn(< v,+l, z + 1 >). Suppose further that p also

proposed a value, < v,+2, x + 2 >, for version x + 2 to which every member of Ahead, re-

sponded. Making matters worse, r can imagine all the processes that did not respond to

its own R-int(state(r)) message may have responded to p's sub(< v,+2,x + 2 >). It may

then be the case that Aheadr U Acks(r,R-int(state(r))) (and v,+l, if it is an add()) form

a majority subset of GpView TM, thereby allowing p to commit view z + 2. Trouble arises

if Acks(r,R-int(state(r))) (and v,+l and v,+2, if both are add() operations) is a majority

subset of GpView_+2; neither r nor any process in Acks(r,R-int(state(r))) can know what

value p would propose for view x + 3.

Proposition 5.4 shows that when r is successful and < v,+l, x + 1 > is a remove() opera-

tion, no previous initiator (like p) can commit a version greater than x + 1. Proposition 5.5

shows that when < V,+l, x + 1 > is an add() operation, it is possible for p to continue com-

mitting new group views and for r to lag behind p. However, if both are successful for a

given group version, both commit the same value. These propositions address exactly the

situation when it appears S-GMP could violate GMP-2 and GMP-3: when two initiators

are successful for the same group version. Propositions 5.4 and 5.5 prove that even when

initiators do not vie for majorities from among the same set of core members (their local

views differ), S-aMP is sate.

Proposition 5.4 Let r be a reconfiguration initiator with ver(r) -- x. Let Ahead_ C_

Acks(r,R-int(x)) report local version x + 1, and let p be a process from which some mem-

ber of Ahead_ received corn(< v_+l,x + 1 >). If Acks(r,R-5.nt(x)) is a majority subset of

LocalView_ and < v_+l,x + 1 > is the removal of a set of processes from GpView _, then p

cannot be successful for any view numbered higher than x + 1.

Proof Let q E Ahead_ and let p be as described. Since q received l:t-int(x) from r after

corn(< v_+_, x + 1 >) from p, it must be that rank(r) < rank(p), so FAULTVq(p) holds for

every such q in Acks(r, Ft-±nt(x)) (by Gossip). As a result, the initiator p can be successful for

x+2 if and only if Acks(r, R-int(z)) is a majority subset of LocalViev_p +1 = kocalView_p -v,+_.

Observe that LocalView_ = Acks(r,R-int(x))U Acks(r,R-±n'G(x)), and that r cannot

have received ack(R-inl;(x)) responses from the members of v_+l; w in other words, v,+l C

l°Reconfigurer r must have received p's proposal to remove v,+l or else q would not have received r's

25



Acks(r, R-int(x)). Thus p can commit LocalView;+_ if and only if (Acks(r,l:t-int(x))-v=+,)

is a majority of LocalViev_p +1. Let (_ = I Acks(r,l:t-int(x)) I and (_ = I Acks(r,R-int(x))I.

Then initiator p is successful for < v=+2, x + 2 > if and only if

_ 1_  -Ivx+,l >
I LocalView_v+l I - I GpView_l - Iv=+' I - e+_-Iv=+, I

contradicting the assumption that Acks(r,R-int(x)) is a majority subset of GpView _.

|

Proposition 5.5 Let r be a reconfiguration initiator with vet(r) = x. Let Aheadr be non-

null and let p be a process that sent corn(< v,+,, x + 1 >) to some member of Aheadr. Then

if r is successful for < vx+,,x + 1 >, then if p later submits < v,+2, x + 2 >, either r or p,

but not both, can be successful for version x + 2.

Proof GMP-3 will be violated if p is able to commit < vx+2, x + 2 > and r is able to

commit < -Acks(r,R-int(x)),x + 2 >. We proceed by analyzing the messages arriving at

Vz+I.

(a) Consider Figure 10 (top diagram). The two-headed split-arrow message from r to

v=+, represents the two possibilities for the arrival of r's commit message,

m = R-corn(< vx+,,x + I >): M-sub(< -Acks(r, R-int(x)), x ÷ 2 >),

at v=+1. p's commit message, corn(< vx+1,x+ I >), to vx+1 is a dashed because of the

possibility that it may not be received. We elide r's Phase II submit message.

Suppose the members of vx+, receive m from r before they receive COrn(< V=+I, Z + 1 >)

from p. Since r's message gossips its belief in p's faultiness, the members of v,+l will never

receive another message from p. In particular the members of v=+, will not receive p's

subsequent M-sub(< v=+2, x + 2 >). We say r owns v_+,.

Using a and (_ as defined in Proposition 5.4, p is successful for version x + 2 if and only

if & > a + [ v_+, [ and r is successful for version x + 2 if and only if a + [ v_+l [ > (_. Both

conditions cannot hold.

(b) If the processes in v_+l receive m from r after corn(< v_+l, x + 1 >) and before

M-sub(< v=+2, x + 2 >) from p, the analysis is the same as in (a); r owns vx+_ once the

members of that set receive m.

(c) In the last case (Figure 10 bottom), p owns v_+_ if its M-sub(< v_+2, z + 2 >) message,

gossiping p's belief in r's faultiness, arrives at V_+l before r's R-corn() message does. Then

R-int(z); had r not received and responded to p's proposal, p's commit message to q would have gossiped

faultyp(r).

26



Vx+l

P

r

I corn(< v_+l,x + 1 >)l

_ .-- ....... " "_+2 >)

\// i

• °

R-int(x) m

Cases (a) and (b): r owns vz+l.

Vx+l

P

r

Case (c): p owns Vz+l.

Figure 10: Case Analysis for Proposition 5.5

27



p is successful for version x + 2 if and only if _ + [ V_+l [ > a and r is successful for version

z + 2 if and only if a > _ + I v_+l [. Again, both conditions cannot hold. II

It remains to prove that when r learns of two version-identical proposals (how this situa-

tion may arise was described in Section 4, Figure 5), the proposal submitted by the initiator

of least rank is the only one that could have been invisibly committed. That is, r correctly

identifies the initiator and proposal that could have been successful; as a result r cannot

act inconsistently with any invisible commits. Referring to the S-GMP algorithm in the Ap-

pendix this necessity arises in determining v2 when Aheadr _ 0, and in determining vl when

Ahead_ = O.

Let GpView _-1 is the most recent r-defined group view and define Subrnissionsr(x) to be

the set of proposed next updates for version x that r learns about in response to its R-Jar O

message: for some initiator i,

Submissions_(x) = {v_ I 3p e Acks(r,R-int()) : NextUpdatep = [vx, x, rank(i)]}

We first describe the composition of Submissions_ (x), showing that every reconfigurer propos-

ing version x either propagates mgr's proposal for version z or proposes mgr's removal.

Proposition 5.6 For all versions x, l Submissions_(x) I <- 2.

Proof Inspecting procedure DetermineProposal, different submissions for the same view

can arise only from mgr and from a reconfiguration initiator proposing mgr's removal. The

latter occurs if and only if the initiator did not learn of any outstanding proposal made by

mgr; that is if Submissions_(x) = 0.

I

We say Submissions_(x) is bivalent if it contains two distinct values. Corollary 5.1 follows

by examing procedure DetermineProposM in the Appendix. It shows that all reconfigurers

either propagate mgr's unique submission for view x or propose mgr's removal.

Corollary 5.1 Let r and r _ be reconfigurers proposing version x. Then if both their

Submissions(z) sets are bivalent, they are identical:

(I Submissi°ns_(x) I = JSubmissionsr,(x) l = 2) ==_

Su bmissions_ (x) = Su bmissions_, (x).

II

28



With these preliminaries we can now prove only one of these two proposals could possibly

have been committed (invisibly or otherwise), and that all reconfigurers can distinguish

which of the two it was. This proposition is vital to the inductive step: it shows that in

going from GpView *-1 to GpView * one and only one value can be committed by any member

of GpView *-1 as the same value is proposed by any successful initiator for the z th group

version.

Proposition 5.7 Let r be a reconfiguration initiator. If Acks(r,R-int(state(r))) is a ma-

jority subset of LocMView r and Submissionsr(x) is bivalent, then r can distinguish which of

the two values proposed could not have been committed invisibly.

Proof Let r be as described, and let Submissionsr(x) = {< v, x >, < v', x >}. Let p be

the process of least rank among those reported to have submitted < v, x >, and let p' be the

process of least rank among those reported to have submitted < v', x >. r must decide which

of the two, p or p', could not have been successful for version x. We show that r chooses

correctly when it is the first bivalent reconfigurer for version z, then prove the proposition

inductively.

In order for either value to have been committed, its initiator must have garnered majority

approval from its local view for the submitted value. Since both p and p' make version x

submissions, both must have local version x - 1 (Proposition 5.3). Without loss of generality

assume rank(p) < rank(p'), and consider the possible roles p could have had:

a) If p were the mgr, its proposal M-sub(< v,x >) could not have reached a majority

subset of GpView_-l; if it had, then p' would have learned of it from some process in

Acks(p', l:t-int(x - 1)). Since r is the first bivalent reconfigurer, Submissionsp,(x) would

have to be the singleton {< v, x >}, which p' would have propagated in Determine-

Proposal.

Thus, < v, z > is not stable because p cannot have been successful for < v, x >. Look-

ing at DetermineProposal, initiator r propagates < v', z > because it was submitted

by p', the initiator with least rank among those mentioned in Submissionsr(x).

b) If p # mgr, it is successful for < v,x > if and only if Acks(p,R-sub(< v,x >)) is a

majority subset of GpView x-1. Both p and p' were able to make proposals so their first

response sets were majority subsets. Let A be their intersection:

A = Acks(p,R-int(x - 1))NAcks(p',R-int(x --1)).

The gossip property and rank(p) < rank(p') mean that a majority of p's local view

believe it faulty upon receiving R-int(z - 1) from p'. Disconnect means that

29



recva(p,R-int(x- 1)) --_ recva(p',R-int(x- 1)) --* fauIty.(p) Va E A.

The question is whether any a E A receives R-sub(< v, x >) from p, which could only

happen before it receives R-int(z - 1) from p':

r cvo(p,a-sub(< v,x >)) r cv (p',a-i=t(x- 1)) --*faultyo(p).

Now, any such a would have forwarded < v, x > as part of NextUpdatea to p' when

responding to R-int(z - 1), in which case either

1. Submissions¢(x) is bivalent, violating the assumption that r is the first bivalent

reconfigurer, or

2. every process in Acks(p',R-int(z - 1)) reported < v, z > as its next pending up-

date. But in this case, Submissionsp,(x) would again be the singleton {< v, x >},

which p' would have propagated in DetermineProposal.

Thus, no a E A received R-sub(< v, z >) from p, meaning the only processes that

could have are those in Acks(p, a-int(z - 1)) - A. This cannot be a majority subset of

GpView _-I since it is disjoint from Acks(p', R-int(z - 1)) which is a majority subset.

We have just proven the base case for the proposition - when r is the first bivalent re-

configurer (it is not hard to see that 'first' is meaningful and well-defined in the context

of successful initiators for a given group view). If r's proposal reaches a majority subset

of 6pView _-1 then the value it propagated will be chosen by the next reconfigurer to

get a majority response to its Reconfiguration Phase I interrogate message as r would

be the submitter with least rank. If r's proposal does not IIreach a majority subset,

the next bivalent reconfigurer will nonetheless choose as r did and so propagate the

correct value.

|

Corollary 5.2 If GpVie_ -1 is defined, there is at most one stably-defined proposal for

group version z.

Proof Proposition 5.7 proves that GetStableProposaI correctly chooses the only proposal

for a given group view that could have been committed invisibly to a reconfiguration initiator

when its Phase I response set is bivalent. When the set is univalent or empty, it is not hard

3O



to see that De_ermineProposal is sate. If this initiator reaches its commit stage, its proposal

is stably-defined and identical to the other stably defined proposals for version x.

|

Theorem 5.1 (Identical Local Views) If GpView *-1 is defined, then all members that

survive to define local version x have identical local x th views.

Proof The result follows from Corollary 5.2; no process commits a local view for version

x that differs from any other processes' version x because all proposals that can possibly

reach the commit stage are identical.

|

Note that Theorem 5.1 implies no temporal constraints on local views, merely that if p

ever defines an x th local view, and if q, too, ever defines an x th local view, then these two

are identical. It does not require LocalView_ and LocalView_ to exist together in some global

state. Thus, to prove S-GMP satisfies GMP-3 requires slightly more work.

5.2 Message Complexity

[16] proves S-GMP (with two minor modifications) is message minimal for Strong GMP.

Moreover, S-GMP is also phase-minimal. The message-minimality proof gives the required

direction of information flow as well as the content of each message. In S-GMP the pattern

of required communication is arranged to minimize the length of the message-path from the

beginning of the update algorithm to the end. For example, Figure 11 shows two ways to

organize the distributed event "send a message to every process in S and collect responses

or time-out'.

Observe that the Phase I submit message is unnecessary if mgr knows a majority of the

non-faulty outer processes already believe a process, say q, faulty. In this light, a contingent

update, piggy-backed on a commit message, can serve as the submit message for the next

view change. We can thus compress successive instances of Simple S-GMP if mgr makes

known when it multicasts the commit message, exactly how it plans to change the group

view next. In Figure 12, process q' crashes before responding to H-sub(--q), causing mgr to

suspect q' faulty. By appending M-sub(-q') to M-com(-q), mgr indicates that it wants to

remove q from the just-formed group view. Outer processes respond to the piggy-backed

commit-submit message as they would respond to a plain submit message. The correctness

proofs (Propositions 5.5 and 5.7 in the previous section require only slight modifications to

handle this optimization).

31



P

S

P

S

\\ /

"., ..7

is the Timeout interval p is willing to wait for any response.

Figure 11: Two possible communication patterns accomplishing "send a message to every

process in S and collect responses or time-out."

mgr

P

ql

r

M-,ub(--q)

faultymgr (q')

M-com(--q):M-sub(--q')

Phase I Compressed Phase H and Phase I

Figure 12: Compressing Successive Instances of Simple S-aMP.

32



When wecan take advantageof compressing phases we gain substantially. Define n_d-----¢f

I GP View_ h and let a_ be the number of processes added to GpView _ and r_ be the number

of processes removed from GpView _. Then Y successive compressed updates (with no re-

configuring) requires and initial n_ submit messages, n_ - r_ acknowledgement messages,

a handshake of 2a_ State-Xfer and ack(State-Xfer) messages, n_ - r_ + a_ commit

messages. To update the new GpView _+1, there are n_ - r_ + a_ - r_+l messages to ac-

knowledge M-sub(< v_+i,x + 1 >), followed again by 2a_+1 messages for the State-Xfer-

ack(State-Xfer) handshake, and n_ - r_ + a_ - r_+l + a_+l commit messages...

z+Y k

E n -Er,+Ea j +2a,,+ ,  -Er,+Eaj =
! Z )-----:r 2='Z

z+Y r+Y

k=z k=x

where 6k = ak - rk. When we cannot take advantage of piggy-backing, there are

Ynz +

z+Y

F_,(x+ r - kl6k
k=z

additional messages.

6 Conclusion

We have described an approach to the asynchronous system membership problem which

provides very strong distributed consistency guarantees, and yet is inexpensive in comparison

even to less powerful membership services. Current distributed systems lack membership

services, forcing application designers to solve this problem repeatedly through ad-hoc, and

often inconsistent, mechanisms. As technology such as GMP becomes more widely available,

we believe that a major obstacle to reliable distributed software development will have been

removed.

References

[1] A. E1 Abbadi and S. Toueg. Maintaining Availability in Partitioned Replicated

Databases. ACM Transactions on Database Systems, 14(2):264-290, June 1989.

[2] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Membership Algorithms in Broadcast

Domains. In A. Segall and S. Zaks, editors, Proceedings of the Sizth Workshop on

Distributed Algorithms and Graphs; Israel. Springer-Verlag, 1992. Lecture Notes in

Computer Science.

33



[3] Y. Amir, D. Dolev, S. Kramer, and D. Mlaki. Transis: A Communication Sub-System
for High Availability. In 22nd Annual International Symposium on Fault-Tolerant Com-

putin:j (FTCS), pages 76-84. IEEE, July 1992.

[4] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery

in Database Systems. Addison-Wesley, 1987.

[5] K. Birman and T. Joseph. Exploiting Virtual Synchrony in Distributed systems. In

Proceedings of the 11th Symposium on Operating System Principles, November 1987.

[6] K. P. Birman and T. A. Joseph. Reliable Communication in the Presence of Failures.

ACM Transactions on Computer Systems, 5(1):47-76, February 1987.

[7] M. Chandy and L. Lamport. Distributed Snapshots: Determining Global States of

Distributed Systems. A.C.M. Transactions on Computer Systems, 3(1):63-75, 1985.

[8] B. A. Coan and G. Thomas. Agreeing on a Leader in Real-Time. In Proceedings of the

11th Real-Time Systems Symposium, pages 166-172, December 1990.

[9] F. Cristian. Reaching Agreement on Processor Group Membership in Synchronous

Distributed Systems. Technical Report RJ 5964, IBM Almaden Research Center, August

1990. Revised from March, 1988.

[10] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of Distributed Consen-

sus with One Faulty Process. Journal of the Association for Computing Machinery,

32(2):374-382, April 1985.

[11] L. Lamport. Time, Clocks and the Ordering of Events in a Distributed System. Com-

munications of the A.C.M., 21(7):558-565, 1978.

[12] K. Marzullo, K. Birman, R. Cooper, and M. Wood. Tools for Distributed Application

Management. Technical Report TR 90-1136, Cornell University, June 1990.

[13] P. M. Melliar-Smith, L. E. Moser, and V. Agrawala. Membership Algorithms for Asyn-

chronous Distributed Systems. In Proceedings of the IEEE 11th International Confer-

ence On Distributed Computing Systems, May 1991.

[14] S. Mishra, L. L. Peterson, and R. D. Schlichting. A Membership Protocol Based on

Partial Order. In Proceedings of the IEEE International Working Conj" on Dependable

Computing for Critical Applications, February 1991.

[15] R. F. Rashid. Threads of a New System. Unix Review, 4:37-49, August 1986.

[16] A. M. Ricciardi. Practical Utility of Knowledge-Based Analyses : Optimizations and

Optimality for and Implementation of Asynchronous Fail-Stop Processes. In Fourth

Conference on the Theoretical Aspects of Reasoning About Knowlege. Morgan Kauf-

mann, March 22-25 1992.

[17] A. M. Ricciardi. The Asynchronous Membership Problem. PhD thesis, Cornell Univer-

sity, January 1993.

34



[18] A. M. Ricciardi, K. P. Birman, and P. Stephenson.The Costof Order in Asynchronous

Systems. In A. Segall and S. Zaks, editors, Proceedings of the Sixth Workshop on

Distributed Algorithms and Graphs; Israel. Springer-Verlag, 1992. Lecture Notes in

Computer Science.

[19] R. D. Schlichting and F. B. Schneider. Fail-Stop Processors: An Approach to Designing

Fault-Tolerant Computing Systems. ACM TOCS, 1(3):222-238, August 1983.

[20] F. B. Schneider. Byzantine Generals in Action: Implementing Fail-Stop Processors.

ACM TOCS, 2(2):145-154, May 1984.

[21] M. D. Skeen. Crash Recovery in a Distributed Database System. PhD thesis, University

of California at Berkeley, May 1982.

35



7 Appendix: The S-GMP Algorithm

We abbreviate "either add or remove Q" with -I-Q. If Q is a set or process identifiers,

Mcastv(Q, ra ) denotes the compound action Vq E Q : (send_(q,m)). Mcastv(Q,m ) is an

indivisible action only in the sense that p does not execute any other events until all messages

are sent; it is not failure-atomic. The message ack(m) acknowledges receipt of message

m. We do not explicitly show gossiping, or channel-disconnect, but assume these are done

transparently.

Task : mgr

while (true)

repeat

GetUpdate(vl);

until (vl _ nil-id);

Mcasbmgr ( LocalViewmgr , M-sub(-t-v 1));

while (vl :_ nil-id) /* Compressed algorithm loop. */

forall p E LocalViewmgr

await either reCWngr (p, ack(M-sub(+vl))) or fauItymgr (p);

if (majority of LocalViewmgr didn't respond)

crashmgr ;

DoCommit(vl, :1:); /* Update LocalViewmgr according to :1:. */

GetUpdate(v2);

if (Joining new members)

Mcastmgr (vl, Join : State-Xfer);

forall p' E vl

await either recvmgr (p',ack(Join) : NextUpdat%,) or faultymgr (p');

if (NextUpdatevl _ 2_)

v2 _ NextUpdatevl;

Mcastmgr (LocalViewmgr, M-co=(=Ev 1): M-sub(=Ev2));

vl _ v2;

/* end mgr Task */

36



Task: Outer Processes, p

recvp(mgr, M-sub(iv 1));

DoPreCommit(vl, 4-); /* Mark vl faulty or operational. */

repeat

sen4(mgr , ack(M-sub(+v 1) ));

await either recvp(mgr,M-com(+vl): M-sub(4-v2)) or faultyp(mgr);

if (!FAULTYp(mgr ))

DoPreCommit(v2);

DoCommit(vl, 4-);

vl .- v2;

else Wait-Reconfiguration ();

until (vl = nil-id);

/* end Outer Process Task */

Reconfiguration

Let p have local version x - 1. For Reconfiguring, we use the following variables:

• NextUpdat% is a tuple of the form [< v, x >, i]p, where < v, x > is the value p is waiting

to commit to form kocalView_p, and rank(i) is the rank (in LocalViewg -1) of the initiator

that submitted < v,x >. When p receives a submission it changes NextUpdat% to

reflect the value proposed and the initiator proposing it.

• LastCommitp is value p committed to form kocalView_ -1.

• state(p) is the triple [ver(p), NextUpdat%, kastCommitp].

• Ahead_ is the set values reported committed for versions numbered greater than ver(r).

Initiator r receives these values in response to its R-int(state(r)) message. In actuality,

the only reported version in Aheadrcan be ver(r) -t- 1.

• SubCurrentr is the set of NextUpdate values r receives with proposed versions equal to

ver(r) -t- 1; SubAhead_ is the set with proposed versions greater than vet(r) + 1.

37



Task: Reconfiguration Initiator, r, with vet(r) = x

Mcas_ (L ocalView_, R- int( state( r ) ) );

forall p E LocalViewr

await either recvr(p, state(p) ) or faulty_(p);

if (majority of LocalYiewr didn't respond) crash,;

/* Determine the value and version to submit from the responses received. */

DetermineProposal(vl, vet, v2);

DoPreCommit (v 1);

Mcast,(LocalViewr, R-sub(< =t=vl, vet >));

foral] p E LocalView,
await either >))) or fa ItU,(p);

if (majority of LocalView_ didn't respond) crash,;

DoCommit(vl);

if (Joining new members)

Mcast_(vl, Join : $tate-Xfer);

forall p' E vl

await either recv_(vl,ack(Join) : NextUpdatep,) or faulty_(p');

if (NextUpdatevl # l)

v2 +- NextUpdatevl;

Mcas#(LocalViewr, R-corn(< =l=v1, vet >): R-sub(=l=v2));

mgr, vl +- r, v2;

Begin mgr Task;

38



Task: Outer Reconfi_uration, p

recvp( r , R- ±at(state())r);

if (rank(p) > rank(r))

crash_

/* Catch up to r if necessary

if (ver(p) < ver(r))

DoCommit ( I_ast Co m mitT);

state(p) _ state(r);

,/

se,_d_(r,state(p));
await either recvp(r,R-sub(< =t:vl,ver >)) or fauItyp(r);

if (not FAULTYp(r))

DoPreCommit (v 1);

se_d_(r,_¢k(R-sub(<_v 1,v_r >)));
await either recup(r,R-com(< =l=vl, ver >): M-sub(=t=v2)) or fauItyp(r);

if (not FAULTYp(r))

DoCommit(vl);

mgr, vl +--- r, v2;

else Wait-Reconfiguration();

else Wait-Reconfigur ation0;

39



/* Sets parameters proposal, version, and invisible. Let ver(r) = x. */

Procedure: DetermineProposal(OUT < proposal, version >, OUT invisible);

Ahead_ _ {[Ids, ver(p)]p I ver(p) = (z + 1)} ;

SubAhead, _ {[Ids, ver(p) + 1,rank(init)]p I ver(p) = (x + 1)};

SubCurrent_ _ {[Ids, ver(p)+ 1,rank(init)]p [ ver(p)= z};

if (Ahead_: O)

/* Partially committed version x + 1. */

proposal _ Ahead,;

GetS tableProposal( invisible, 5ubAheadr);

version _ x + 1;

return();

/* All respondents report the same local version.

version *-- x + 1;

if (SubCurrentr is empty)

proposal _ < -mgr , x + l > ;

Get Update( invisible ) ;

return();

if (5ubCurrent, is a singleton)

proposal _-- SubCurrent_;

Get Update( invisible );

return();

/* SubCurrent_ has two elements. */

GetStableProposal(proposal, SubCurrent_);

Get Update( invisible);

return();

,/

/* update-set has no more than two elements. */

Procedure: GetStableProposal(OUT < val, vet >, IN update-set)

< val, vet > _ the element of update-set with the lowest ranked initiator.

return();

4O


